

Welcome to FORCE GROMACS documentation!

FORCE BDSS GROMACS Plugin

[image: Build status]
 [https://travis-ci.com/force-h2020/force-bdss-plugin-gromacs][image: Coverage status]
 [http://codecov.io/github/force-h2020/force-bdss-plugin-gromacs?branch=master][image: Documentation Status]
 [https://force-tutorial.readthedocs.io/projects/force-bdss-gromacs-plugin/en/latest/?badge=latest]This repository contains the implementation of a plugin for the Business Decision Support System (BDSS), contributing
the GROMACS [http://www.gromacs.org] Molecular Dynamics package.
It is implemented under the Formulations and Computational Engineering (FORCE) project within Horizon 2020
(NMBP-23-2016/721027 [https://www.the-force-project.eu]).

The GromacsPlugin class contributes several BDSS objects, including DataSource
and NotificationListener subclasses, as well as a stand-alone wrapper
around Gromacs version 2019.4 [http://manual.gromacs.org/documentation/2019-current/index.html].

Installation

Installation requirements include an up-to-date version of force-bdss. Additional modules that can contribute to the force-wfmanager UI are also included,
but a local version of force-wfmanager is not required in order to complete the
installation.

To install force-bdss and the force-wfmanager, please see the following
instructions [https://github.com/force-h2020/force-bdss/blob/master/doc/source/installation.rst].

After completing at least the force-bdss installation steps, clone the git repository:

git clone https://github.com/force-h2020/force-bdss-plugin-gromacs

the enter the source directory and run:

python -m ci install

This will allow install the plugin in the force-py36 edm environment, allowing the contributed
BDSS objects to be visible by both force-bdss and force-wfmanager applications.

Documentation

Full documentation is being hosted at the FORCE GROMACS ReadTheDocs page [https://force-tutorial.readthedocs.io/projects/force-bdss-gromacs-plugin].

Alternatively, to build the documentation locally in the doc/build directory, run:

python -m ci docs

User Manual

	Introduction

	BDSS Objects

API Reference

Introduction

GROMACS is a Molecular Dynamics (MD) package, primarily designed to simulate biomolecules,
such as proteins, lipids and nucleic acids.

A cross-platform distribution is available as an egg from EDM, currently
supporting version 2019.4 [http://manual.gromacs.org/documentation/2019-current/index.html]

Chemicals Module Design

The Force Gromacs wrapper is built on top of a small library defining a hierarchical
collection of generic chemical species, force_gromacs.chemicals.
It is build for extensibility, providing base traits classes as well as the interfaces
for these objects that could be fulfilled by objects in an external package.

The lowest object in this hierarchy is the IParticle, which defines a very simple
interface for a class that possesses both mass and charge attributes. A particle
is not therefore fixed to a specific length scale since a proton, atom, molecule or
large molecular complex species would all be able to fulfil this interface. An example of
an object that fulfils this interface is the GromacsParticle class.

>>> my_particle = GromacsParticle(mass=12, charge=0)
>>> my_particle.mass
12.0
>>> my_particle.charge
0.0

Next up from this is the IParticleGroup class, representing a collection of particles.
The interface inherits from IParticle, so that a group of particles can also be
represented by a reduced representation given by a single particle.

In the atomistic length scale, we also introduce the IFragment class to describe
molecular fragments. A fragment represents a part of a molecule containing a single
or collection of covalently bonded particles. Therefore it inherits from IParticleGroup,
but also contains the attribute stoichiometry, the stoichiometric number of each
fragment in the molecule. An example of an object that fulfils this interface is the
GromacsFragment class, which also contains (optional) information regarding the geometry
of molecular fragments.

>>> my_fragment = GromacsFragment(particles=[my_particle])
>>> my_fragment.mass
12.0
>>> my_fragment.charge
0.0
>>> my_fragment.stoichiometry
1

A molecule of sodium cabonate \(Na_2CO_3\) consists of 3 fragments:
two \(Na^{+}\) atomic ions and the \(CO_3^{2-}\) molecular ion:

\[Na_2CO_3 \leftrightarrow 2Na^{+} + CO_3^{2-}\]

All ionic species are free to dissociate, and therefore do not possess any constraints
in a MD simulation regarding their equations of motion. We can also freely add and take
away integer numbers of these objects in a simulation cell and calculate their molecular
concentrations in a mixture. However, in reality we cannot ‘add’ fragments from a jar
on the laboratory shelf, and instead describe formulations by their
constituent molecules (typically in concentration % by mass).

Therefore, the Molecule class is designed to represent a full computational
model for a chemical found in the laboratory. It contains a list of IFragment classes,
and must be overall electronically neutral. We can describe the calcium carbonate molecule
by the following force_gromacs objects:

Firstly the constituent atomic particles:

>>> sodium = GromacsParticle(element='Na', mass=11, charge=1)
>>> carbon = GromacsParticle(element='C', mass=12, charge=4)
>>> oxygen = GromacsParticle(element='O', mass=16, charge=-2)

Next the fragment ions:

>>> sodium_ions = GromacsFragment(particles=[sodium], stoichiometry=2)
>>> sodium_ions.mass
22.0
>>> sodium_ions.charge
2.0

>>> carbonate_ion = GromacsFragment(particles=[carbon] + 3 * [oxygen])
>>> carbonate_ion.mass
60.0
>>> carbonate_ion.charge
-2.0

And finally the full molecule:

>>> sodium_carbonate = Molecule(fragments=[sodium_ions, carbonate_ion])
>>> sodium_carbonate.mass
82.0
>>> sodium_carbonate.charge
0.0
>>> sodium_carbonate.neutral
True

BDSS Plugin Objects

The FORCE Gromacs plugin also contributes serveral BDSS objects that can be used either
out of the box or provide a base class for further customization.

Data Sources

FragmentDataSource

The FragmentDataSource class provides an interface for a BDSS user to create a GromacsFragment that
can be propagated through a Workflow as a DataValue. The data source takes no input parameters, and produces
a single output parameter, which is the GromacsFragment instance being constructed. Therefore it can be considered
as a factory of GromacsFragment objects.

The following information must be provided in the model interface:

	Name: A human readable name of the fragment.

	Symbol: The symbol that is used to idenfity the fragment in GROMACS input files

	Coordinate: A path to the GROMACS coordinate .gro file that described the fragment’s geometry

	Topology: A path to the GROMACS topology .itp file that described the fragment’s force field parameters

MoleculeDataSource

The MoleculeDataSource class provides an interface for a BDSS user to create a GromacsMolecule that
can be propagated through a Workflow as a DataValue. The data source takes one or more GromacsFragment
input parameters, and produces a single output parameter, which is the GromacsMolecule instance being constructed.
Therefore it can be considered as a factory of GromacsMolecule objects.

The following information must be provided in the model interface:

	No. Fragment Types: The number of different fragment types in the molecule

	Fragment Numbers: The stoichiometric number of each fragment type in the molecule

SimulationDataSource

The SimulationDataSource base class provides an interface for a BDSS user to create and run a
BaseGromacsSimulationBuilder instance that can construct and perform a GromacsPipeline object.
The data source takes one or more GromacsMolecule input parameters, and produces a single output parameter,
which is the file path to the GROMACS trajectory file that is expected to be post-processed by further data sources.

The data source requires developers to implement the create_simulation_builder method, which produces
a BaseGromacsSimulationBuilder instance.

def create_simulation_builder(self, model, parameters):
 """Method that returns a `GromacsSimulationBuilder` object capable
 of generating a `GromacsPipeline`

 Parameters

 model: SimulationDataSourceModel
 The BaseDataSourceModel associated with this class
 parameters: List(DataValue)
 a list of DataValue objects containing the information needed
 for the execution of the DataSource.

 Returns

 simulation_builder: BaseGromacsSimulationBuilder
 An object capable of generating a GromacsPipeline that calls
 a Gromacs simulation
 """

It also emits a SimulationProgressEvent object containing
the bash script for each GROMACS command that is called during the simulation.

The following information must be provided in the model interface:

	Name: A human readable name of the simulation.

	Output Directory: The local directory path that will be used to contain simulation output and input files

	No. Molecule Types: The number of different molecule types in the simulation cell

	Size: The total number of fragments in the simulation

	No. Steps: The length of the simulation in time steps

	MARTINI Parameter: A path to the GROMACS topology .itp file that contains the MARTINI forcefield

	Minimization Parameter File: File path to the GROMACS parameter .top file that contains the instructions for an
energy minimization run

	Production Parameter File: File path to the GROMACS parameter .top file that contains the instructions for a
production run

	Overwrite Simulation Data?: Whether or not to overwrite any existing simulation data files.

	Dry Run?: Whether or not to perform a dry run of the simulation.

	MPI Run?: Whether or not to perform an MPI run of the simulation using parallel processing

	No. Processes: Number of processes to use in an MPI run

	Overwrite Data?: Whether or not to overwrite any existing simulation data files.

Notification Listeners

HPCWriter

The HPCWriter class reacts to a SimulationProgressEvent in order to output bash file that can
be used as a submission script to a HPC. The file contains the series of GROMACS commands that is communicated
by the SimulationProgressEvent as well as a customizable header and prefix. The output file name is determined
by the name of the simulation contained in the event’s bash script.

The following information must be provided in the model interface:

	Header: The header of the output bash file containing HPC submission script details

	Prefix: An extended multi-line section of the output bash file containing any additioanl submission script
details

	Dry Run?: Whether or not to perform a dry run of writing the file.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to FORCE GROMACS documentation!

 		
 Introduction

 		
 Chemicals Module Design

 		
 BDSS Objects

 		
 Data Sources

 		
 FragmentDataSource

 		
 MoleculeDataSource

 		
 SimulationDataSource

 		
 Notification Listeners

 		
 HPCWriter

_static/minus.png

_static/plus.png

_static/file.png

